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Abstract

Class-Incremental Learning (CIL) requires models to contin-
ually acquire knowledge of new classes without forgetting old
ones. Despite Pre-trained Models (PTMs) have shown excel-
lent performance in CIL, catastrophic forgetting still occurs
as the model learns new concepts. Existing work seeks to uti-
lize lightweight components to adjust the PTM, while the for-
getting phenomenon still comes from parameter and retrieval
levels. Specifically, iterative updates of the model result in pa-
rameter drift, while mistakenly retrieving irrelevant modules
leads to the mismatch during inference. To this end, we pro-
pose MOdel Surgery (MOS) to rescue the model from forget-
ting previous knowledge. By training task-specific adapters,
we continually adjust the PTM to downstream tasks. To mit-
igate parameter-level forgetting, we present an adapter merg-
ing approach to learn task-specific adapters, which aims to
bridge the gap between different components while reserve
task-specific information. Besides, to address retrieval-level
forgetting, we introduce a training-free self-refined adapter
retrieval mechanism during inference, which leverages the
model’s inherent ability for better adapter retrieval. By jointly
rectifying the model with those steps, MOS can robustly re-
sist catastrophic forgetting in the learning process. Extensive
experiments on seven benchmark datasets validate MOS’s
state-of-the-art performance.

Code — https://github.com/sun-hailong/AAAI25-MOS

Introduction
In recent years, deep learning has achieved significant re-
sults in many real-world applications (Deng et al. 2009; He
et al. 2015; Cao et al. 2024b; Sun et al. 2024). While in the
open world, data often appears in a streaming format (Go-
lab and Özsu 2003), requiring a machine learning paradigm
capable of incrementally acquiring new class knowledge,
which is denoted as Class-Incremental Learning (CIL) (Re-
buffi et al. 2017; Zhou et al. 2024b). One of the signifi-
cant challenges in CIL is catastrophic forgetting, where the
model, after learning new classes incrementally, gradually
loses its ability to recognize the old ones (French 1999).
In response to this challenge, the field of CIL is evolving
with the emergence of pre-trained models (PTMs). Unlike
the traditional approach of “training from scratch” (Li and
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Hoiem 2017; Zhou et al. 2023; Ye et al. 2019), contempo-
rary CIL methods are increasingly leveraging PTMs, which
are initially pre-trained on vast datasets using substantial re-
sources (McDonnell et al. 2024; Jung et al. 2023). This pre-
training process endows PTMs with robust generalization
abilities. Consequently, designing an effective CIL method
that leverages PTMs and resists catastrophic forgetting has
garnered significant attention from researchers.

Due to the generalization of PTMs, existing works of-
ten freeze the pre-trained weights and adapt to incremen-
tal tasks using additional lightweight modules (Hu et al.
2022; Chao et al. 2020; Ye, Lu, and Zhan 2022). For ex-
ample, visual prompt tuning (Jia et al. 2022) customizes
prompts to modify model behavior, facilitating adaptation
to downstream tasks. Specifically, L2P (Wang et al. 2022c)
designs a key-query matching strategy to retrieve instance-
specific prompts from a prompt pool. Based on L2P, Du-
alPrompt (Wang et al. 2022b) introduces expert prompts
to encode task-specific information and explores the im-
pact of prompt depth. Furthermore, CODA-Prompt (Smith
et al. 2023) proposes an attention-based weighting method
for prompts to enhance the efficacy of prompt retrieval.

However, as the model learns new concepts, catastrophic
forgetting still occurs. This forgetting phenomenon happens
at both the parameter and retrieval levels. During the train-
ing stage, although many methods use lightweight compo-
nents to adjust the PTM, iterative updates of these com-
ponents will lead to parameter drift and trigger forgetting.
Moreover, existing works devote to preventing conflicts be-
tween prompts or achieving orthogonal projection, which
exacerbates parameter drift between new and old compo-
nents. During inference, training multiple lightweight mod-
ules requires selecting the most relevant one, but the model
may mistakenly retrieve the irrelevant modules, leading to
the performance decay. This motivates us to question if it
is possible to jointly rectify the model to resist catastrophic
forgetting at both the parameter and retrieval levels?

Facing the challenges at both the parameter and retrieval
levels, our model should be able to effectively design
mechanisms to overcome these issues. To address forgetting
at the parameter level, the model needs to develop effective
update methods that ensure the updated parameters remain
discriminative for old data. To overcome forgetting at the
retrieval level, the model requires efficient self-correction
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strategies to help utilize relevant information, assisting in
the instance-specific retrieval of lightweight modules.

To this end, we propose MOdel Surgery (MOS) for pre-
trained model-based class-incremental learning to rescue the
model from forgetting previous knowledge. This surgery
is divided into the training and inference stages. To miti-
gate parameter-level forgetting, we present an adapter merg-
ing approach during training, which learns task-specific
adapters while bridging gaps between components and re-
taining task-specific information. This strategy helps previ-
ously learned adapters aid in learning new tasks. To address
retrieval-level forgetting, we introduce a training-free self-
refined adapter retrieval mechanism during inference, which
leverages the model’s inherent ability for better adapter
retrieval. This mechanism requires no additional training
overhead, making the algorithm simple and efficient. Fi-
nally, to enable the model to balance the stability-plasticity
dilemma, we present a model ensemble method that inte-
grates the model’s capabilities across multiple phases. It not
only ensures strong generalization but also allows the model
to quickly recognize and update information. Experiments
on seven benchmark datasets validate the effectiveness of
MOS. Additionally, the visualization of the self-refined
adapter retrieval mechanism indicates that MOS effectively
learns adapter retrieval for various downstream tasks.

Related Work
Class-Incremental Learning (CIL). It aims to enable mod-
els to acquire new classes knowledge while retaining pre-
viously learned information (Rebuffi et al. 2017). Existing
works can be roughly categorized into several categories.
Knowledge distillation-based methods (Li and Hoiem 2017;
Rebuffi et al. 2017; Snell, Swersky, and Zemel 2017) estab-
lish a mapping between the former stage model and the cur-
rent model, thereby aiding the latter in retaining characteris-
tics from earlier updates during incremental learning (Hin-
ton, Vinyals, and Dean 2015). Data rehearsal-based meth-
ods (Chaudhry et al. 2018; Liu et al. 2020; Zhao et al. 2021)
select and replay crucial exemplars from old classes during
training new ones to continuously revise former knowledge.
Parameter regularization-based methods (Aljundi, Kelchter-
mans, and Tuytelaars 2019; Kirkpatrick et al. 2017) aim
to predict and minimize the drift of key parameters by us-
ing regularization terms. Model rectification-based meth-
ods (Pham, Liu, and Steven 2022; Shi et al. 2022; Yu et al.
2020) focus on correcting the model’s inductive bias to en-
sure unbiased estimations. Model expansion-based meth-
ods (Chen and Chang 2023; Hu et al. 2023; Wang et al.
2022a; Yan, Xie, and He 2021) construct non-interfering
subnetworks for each task. During inference, they are com-
bined to form a larger feature map and train a classifier to
effectively calibrate across all classes.
Pre-Trained Model-Based CIL. PTM-based CIL has
emerged as a hot topic in the current CIL research area. With
advances in pre-training techniques, numerous parameter-
efficient fine-tuning (PEFT) methods (Jia et al. 2022; Hu
et al. 2022; Lian et al. 2022; Rebuffi, Bilen, and Vedaldi
2017; Cao et al. 2024a; Hu et al. 2024; Lu et al. 2024; Li
et al. 2024; Wei et al. 2019) have been developed. These

methods aim to improve model performance with mini-
mal additional resources while freezing pre-trained weights.
In this context, L2P (Wang et al. 2022c) introduces a
prompt pool, selecting instance-specific prompts via a key-
query matching selection mechanism to guide the PTM’s
response. DualPrompt (Wang et al. 2022b) extends L2P
by designing G-Prompt and E-Prompt, which encode task-
invariant and task-specific instructions, respectively. CODA-
Prompt (Smith et al. 2023) innovates by developing decom-
posed prompts and combining them using an attention-based
weighting method. DAP (Jung et al. 2023) extends prompt
selection into prompt generation. SLCA (Zhang et al. 2023)
reveals that fine-tuning a ViT backbone with a lower learn-
ing rate at the representation layer yields higher accuracy
than prompt strategies. APER (Zhou et al. 2024a) explores
various PEFT methods and shows that prototypical classi-
fiers serve as a strong baseline, and RanPAC (McDonnell
et al. 2024) further expands APER in random projection.
EASE (Zhou et al. 2024c) concatenates the feature repre-
sentations of multiple task-specific backbones.

Preliminaries
Class-Incremental Learning
Class-incremental learning aims to acquire knowledge from
continuously evolving data streams that introduce new
classes while retaining knowledge of previous ones to build
a unified classifier (Rebuffi et al. 2017). Consider a series of
B training stages, expressed as {D1,D2, · · · ,DB}, where
Db = {(xb

i , y
b
i )}

nb
i=1 represents the b-th incremental stage

containing nb instances. Correspondingly, the testing set
is denoted as {D1

t ,D2
t , · · · ,DB

t }. Within this setting, each
training instance xb

i ∈ RD is associated with a class yi ∈ Yb.
Here, Yb defines the set of labels for task b, and it is ensured
that Yb ∩ Yb′ = ∅ for any b ̸= b′. During b-th training stage,
the model is updated utilizing data exclusively from Db. In
this paper, we follow the exemplar-free setting in (Wang
et al. 2022c,b; Zhou et al. 2024a), which entails not using
any historical exemplars from previous classes. Therefore,
the model can only access data from Db for training during
the b-th stage. The effectiveness of the model is evaluated
across all previously encountered classes, collectively rep-
resented as Yb = Y1 ∪ · · · ∪ Yb, after each CIL task. Specifi-
cally, we aim to find a model f(x) : X → Yb that minimizes
empirical risk across all test datasets:

f∗ = argmin
f∈H

E(x,y)∼D1
t∪···Db

t
I (y ̸= f(x)) , (1)

where H is the hypothesis space and I(·) denotes the indica-
tor function. Db

t represents the testing set of task b. An effec-
tive CIL model satisfying Eq. 1 exhibits discriminative abili-
ties across all classes. It achieves a balance between learning
new classes and retaining information about old ones.

Following the typical PTM-based CIL works (Wang et al.
2022c,b), we assume that a PTM (e.g., Vision Transformer
(ViT) (Dosovitskiy et al. 2020)) is available as the initial-
ization for f(x). For clearer understanding, we decouple
the PTM into two components: f(x) = W⊤ϕ(x), where
ϕ(·) : RD → Rd is the feature extractor and W ∈ Rd×|Yb|
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is the classifier. We denote the classifier for class k as wk:
W = [w1,w2, · · · ,w|Yb|]. For a standard ViT, the initial
encoding layer converts the image into a sequence of out-
put features, denoted as xe ∈ RL×d, where L is the se-
quence length. We simplify this by treating the first token
in xe to be the [CLS] token. The sequence xe is then pro-
cessed through subsequent layers, including multi-head self-
attention and MLP, to produce the final embeddings. Finally,
the embedded [CLS] token is considered as ϕ(x).

Analysis of PTM-Based CIL
Learning with PTMs. A representative work in PTM-based
CIL is L2P (Wang et al. 2022c). They introduce a strategy
of freezing the pre-trained weights and constructing a
learnable prompt pool that can be shared across all tasks.
This prompt pool is denoted as P = {P1, P2, · · · , PM},
where Pj ∈ RLp×d is a single prompt with token length
Lp and the same embedding size d as xe. M is the size of
the prompt pool. Each prompt in this pool corresponds to
a specific key {(k1, P1), (k2, P2), · · · , (kM , PM )}, where
ki ∈ Rdk . First, they utilize a PTM without prompting (i.e.,
ϕ(·)) to encode the features into the key’s embedding space
and retrieve prompts with similar keys. During inference,
given an input x, the model employs ϕ(x) to look up the
top-N keys by solving the objective in Eq. 2. This process
retrieves the most relevant keys and their corresponding
prompts from the prompt pool.

Kx = argmin
{si}N

i=1⊆[1,M ]

N∑
i=1

γ (ϕ(x),ksi) , (2)

where K is the set of all keys and Kx is the selected
top-N keys. γ(·, ·) denotes the cosine distance. Finally, L2P
minimize the end-to-end training loss function:

min
P,K,ϕ

ℓ(W⊤ϕ(x;P), y) + λ
∑
Kx

γ (ϕ(x),ksi) , (3)

where ℓ(·, ·) is the cross-entropy loss that measures the dis-
crepancy between prediction and ground truth. λ is a scalar
to weight the loss. Optimizing Eq. 3 enhances the PTM’s
ability to incorporate task-specific information, allowing it
to adapt more effectively to evolving data instances.
Forgetting of parameter and retrieval levels. L2P continu-
ally updates prompts and retrieves instance-specific prompts
to guide the PTM’s response. However, although the model
learns new concepts, catastrophic forgetting still occurs
at the parameter and retrieval levels. Specifically, Eq. 3
shows how L2P uses lightweight modules to adjust the PTM
to downstream tasks. As the prompts are iteratively up-
dated, they gradually adapt to the subsequent tasks, lead-
ing to parameter drift. On the other hand, training multiple
lightweight modules requires selecting the most relevant one
during inference, while the model may mistakenly retrieve
the irrelevant modules, leading to the performance decay.
The mistaken retrieval comes from three aspects: First, mod-
ules learned in previous tasks might be re-selected for new
tasks, causing confusion between the retrieval of old and
new modules. Besides, since the keys for subsequent tasks

do not exist during current training, a gap may arise between
the keys and the feature embeddings, leading to mistaken re-
trieval during inference. Therefore, it is essential to design a
method to jointly rectify the model to resist catastrophic for-
getting at both the parameter and retrieval levels.

MOS: Model Surgery for PTM-based CIL
Facing the challenge of resisting catastrophic forgetting, we
need a method to jointly rectify the model. The key idea of
MOS is to design model surgery in two aspects, i.e., training
stage surgery that mitigates parameter drift and testing stage
surgery that retrieves better lightweight modules. Training
stage surgery aims to use previously learned knowledge to
improve performance on current tasks, allowing the model
to adapt to new tasks more quickly. Testing stage surgery
seeks to find a mechanism for better adapter retrieval with-
out additional overhead. As a result, the model can benefit
from continual lightweight module updates and effective
retrieval ability without forgetting existing knowledge.

We first introduce the process of progressively merged
adapters for mitigating parameter drift and then discuss the
self-refined adapter retrieval mechanism. We summarize the
inference function with pseudo-code in the last part.

Progressively Merged Adapters
To handle the parameter drift caused by the iterative
updates of the model, we need to bridge the gap between
different lightweight modules. In other words, as the model
continually receives new data and tasks, it is crucial to
effectively retain and utilize previously learned knowledge.
This approach allows the model to transfer prior knowledge
to new tasks and mitigates the parameter drift problem. In
Eq. 3, the embedding of a given input x is obtained using
instance-specific prompts. During the incremental phase,
a potential problem can emerge, i.e., iterative updates to
existing prompts might cause them to better match new
tasks, possibly resulting in forgetting older tasks.

Due to the large prompt pool in the above methods, which
exacerbates mistaken retrieval, we suggest mitigating this
problem by using a smaller number of lightweight modules.
In detail, by directly incorporating adapter tuning (Rebuffi,
Bilen, and Vedaldi 2017) into the PTM to optimize a single
adapter for encoding task-specific information, we achieve
this goal through the application of this method. This en-
hanced integration allows facilitates a more effective assim-
ilation of task-specific information. With this approach, we
only need to optimize a collection of adapters to encode
task-specific information. Denote that there are L trans-
former blocks in the pre-trained model, each with a self-
attention module and an MLP layer. We integrate an adapter
into each layer’s MLP via residual connections. An adapter
is a bottleneck module comprising a down-projection layer
Wdown ∈ Rd×r, a non-linear activation function ReLU, and
an up-projection layer Wup ∈ Rd×r. The output formula of
the MLP is formatted as follows:

xo = MLP(xi) + ReLU(xiWdown)Wup, (4)

where xi and xo are the input and output of the MLP, respec-
tively. Eq. 4 illustrates how to enhance the task information
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Figure 1: Illustration of MOS. Left: the training protocol of MOS. We use progressively merged adapters to incrementally adapt the PTM.
Right: the self-refined adapter retrieval mechanism for the testing stage. We use the model’s own capabilities to correct errors caused by the
mistaken retrieval problem.

by adding residual connections of adapters to the original
outputs. In the context of ViT and for a specific i-th task,
we define the set of adapters across all L transformer blocks
as Ai, representing task-specific adapters. Furthermore, we
denote the output embedding of a given Ai, combined with
the PTM, as ϕ(x;Ai). Therefore, when a new task emerges,
we freeze the weights of the PTM and focus solely on opti-
mizing the adapters and the corresponding classifier W :

min
Ai,W

∑
(x,y)∈Db

ℓ
(
W⊤ϕ (x;Ai) , y

)
. (5)

We enable the incorporation of task-specific information
into embeddings through adapters by optimizing Eq. 5, fa-
cilitating the learning of new tasks. In an ideal scenario, if
the task ID of each test sample is known, we can easily se-
lect the corresponding task-specific adapter using this ID to
achieve optimal results.

However, in the CIL setting, obtaining such a task ID dur-
ing the testing phase is forbidden. To address this challenge
and mitigate parameter drift, we propose the training stage
surgery which uses adapter merging strategy based on Expo-
nential Moving Average (EMA) in Eq. 6. This approach al-
lows subsequent adapters to retain some knowledge of their
predecessors, ensuring satisfactory results even if an incor-
rect A is selected.

Ab = (1− α)Âb +
α

b− 1

∑b−1

k=1
Ak, (6)

where Âb represents the set of adapters for the b-th train-
ing stage and Ab is the final result after the EMA process.
Specifically, given an adapter comprises Wup and Wdown,
we perform the merge process on both of them to facilitate
the integration of adapters. When training a new Ab, all pre-
viously trained Ak are frozen, and the adapter merging pro-
cess is executed following each backpropagation step.
Effect of adapter merging strategy. Figure 1 (left) depicts
this merging process. This strategy ensures that the train-
ing of the current adapter Ab does not interfere with the

performance of already trained adapters, thereby preventing
catastrophic forgetting. Moreover, it guarantees that each A
retains task-specific information while maintaining remain-
ing well-aligned in the feature space, even if an incorrect
A is selected. In this way, we can mitigate parameter drift
during iterative adapter updates. Moreover, because adapters
are lightweight branches, they require significantly fewer pa-
rameters compared to fully fine-tuning the backbone. The
parameter cost for saving these adapters is calculated as
(B × L × 2dr), where B denotes the number of tasks, L
is the number of transformer blocks, and 2dr signifies the
parameter count of each adapter (i.e., linear projections).

Self-Refined Adapter Retrieval Mechanism
After obtaining these task-specific adapters, we utilize a
prototype-based classifier (Snell, Swersky, and Zemel 2017)
for prediction. Specifically, after the training process of each
incremental stage, we extract the class prototype of the i-th
class using adapter Ab:

pi,b =
1

N

∑|Db|

j=1
I(yj = i)ϕ(xj ;Ab), (7)

where N is the instance number of class i. Eq. 7 illustrates
the constrution of classifier. During inference, we directly
adopt the class prototype as the classifier weight, i.e., wi =
pi, and utilize a cosine classifier for classification:

f(x|Ai) = (
W

∥W∥2
)⊤(

ϕ(x;Ai)

∥ϕ(x;Ai)∥2
), (8)

where Ai denotes the selected adapter for the input x.
Eq. 2 illustrates how prompts are selected from the

prompt pool. Subsequently, L2P integrates the selected
prompt into the original PTM (i.e., ϕ(x;P )) to guide the
model’s response. However, this approach heavily relies
on the retrieval mechanism of key-query pairs. Mistakenly
retrieving the irrelevant prompts often leads to performance
decay. To address the retrieval-level issue, we design
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Method CIFAR B0 Inc5 CUB B0 Inc10 IN-R B0 Inc20 IN-A B0 Inc20 ObjNet B0 Inc10 OmniBench B0 Inc30 VTAB B0 Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

Finetune 38.90 20.17 26.08 13.96 32.31 22.78 24.28 14.51 19.14 8.73 23.61 10.57 34.95 21.25
Finetune Adapter 60.51 49.32 66.84 52.99 58.17 52.39 45.41 41.10 50.22 35.95 62.32 50.53 48.91 45.12
LwF 46.29 41.07 48.97 32.03 45.72 34.17 37.75 26.84 33.01 20.65 47.14 33.95 40.48 27.54
L2P 85.94 79.93 67.05 56.25 75.46 69.77 49.39 41.71 63.78 52.19 73.36 64.69 77.11 77.10
DualPrompt 87.87 81.15 77.47 66.54 73.10 67.18 53.71 41.67 59.27 49.33 73.92 65.52 83.36 81.23
CODA-Prompt 89.11 81.96 84.00 73.37 77.97 72.27 53.54 42.73 66.07 53.29 77.03 68.09 83.90 83.02
SimpleCIL 87.57 81.26 92.20 86.73 61.26 54.55 59.77 48.91 65.45 53.59 79.34 73.15 85.99 84.38
APER+ Finetune 87.67 81.27 91.82 86.39 68.54 58.37 61.01 49.57 61.41 48.34 73.02 65.03 87.47 80.44
APER+ VPT-S 90.43 84.57 92.02 86.51 68.83 62.03 58.39 47.20 64.54 52.53 79.63 73.68 87.15 85.36
APER+ VPT-D 88.46 82.17 91.02 84.99 77.05 69.47 58.48 48.52 67.83 54.65 81.05 74.47 86.59 83.06
APER+ SSF 87.78 81.98 91.72 86.13 75.47 67.02 61.30 50.03 69.15 56.64 80.53 74.00 85.66 81.92
APER+ Adapter 90.65 85.15 92.21 86.73 75.82 67.95 60.47 49.37 67.18 55.24 80.75 74.37 85.95 84.35
SLCA 92.49 88.55 89.51 82.19 81.17 77.00 68.66 58.74 72.55 61.30 82.80 74.10 90.94 90.76
EASE 91.51 85.80 92.23 86.81 81.74 76.17 65.34 55.04 70.84 57.86 81.11 74.85 93.61 93.55
MOS 93.30 89.25 93.49 90.12 82.96 77.93 69.13 59.12 74.69 63.62 85.91 80.05 92.62 92.79

Table 1: Average and last performance comparison on seven datasets with ViT-B/16-IN21K as the backbone. ‘IN-R/A’ stands for ‘ImageNet-
R/A,’ ‘ObjNet’ stands for ‘ObjectNet,’ and ‘OmniBench’ stands for ‘OmniBenchmark.’ We report all compared methods with their source
code. The best performance is shown in bold. All methods are implemented without using exemplars.

the testing stage surgery which uses self-refined adapter
retrieval mechanism. It is an efficient and training-free
method that enables the model to autonomously correct this
problem, thereby improving adapter retrieval. This mech-
anism does not require any additional training overhead
and is only used during the inference process, making the
algorithm both simple and efficient.

Since there is a gap between the PTM and downstream
datasets, we first use an adapter to fine-tune the PTM on the
first incremental task, denoting the model as f(x;A1). This
process effectively bridges this gap and makes the model
suitable as the initial selector. During inference, we utilize
f(x;A1) to obtain the embedding of each testing example
and perform the initial retrieval of task-specific adapters.
Specifically, given an input x, we first obtain the prediction
result f(x|A1) of the model through Eq. 8. Afterwards, we
can easily infer its corresponding task ID i:

i = argmax (f(x|A1)) mod |Yb|, (9)

where Yb is the number of classes for each task. Building
on this result, we introduce an iterative self-refined process.
As defined in Eq. 8, this process primarily uses f(x;Ai)
to obtain prediction and identify the task ID j. Since each
adapter is task-specific, we can determine whether to end the
iteration by checking if i = j. Specifically, through f(x|Ai),
we can infer its corresponding task ID j:

j = argmax (f(x|Ai)) mod |Yb|. (10)

For example, in a scenario where each task comprises 10
classes, classes 0 through 9 are in the task 0, while classes
10 through 19 are in the task 1. Subsequently, if i ̸= j, we
replace i with j and repeat the process of Eq. 10 until i = j,
ensuring the self-consistency.
Effect of self-refined adapter retrieval mechanism. Fig-
ure 1 (right) illustrates the self-refined process. Firstly,
ϕ(x;A1) with the prototype-based classifier bridges the gap
between upstream and downstream datasets, enhancing the
model’s ability to generalize to new classes. Hence, we use it

as the initial selector to start the self-refined iteration. More-
over, this approach is training-free and does not incur any
additional training costs, ensuring the algorithm’s efficiency.
Due to the self-refined adapter retrieval mechanism allow-
ing the model to verify the correctness of its initial predic-
tions, we can easily check model consistency, thereby alle-
viating the aforementioned mistaken retrieval problem. By
using this mechanism, MOS successfully corrects some im-
ages that were originally incorrectly predicted. The detailed
visualization examples will be provided in experiments.

Multi-Stage Model Ensemble
Inspired by the Complementary Learning System of the hu-
man brain (McClelland, McNaughton, and O’Reilly 1995;
Kumaran, Hassabis, and McClelland 2016), which suggests
that the anterior cingulate circuit is responsible for rapid
pattern recognition and unconscious memory, and the hip-
pocampal circuit for deep processing and conscious mem-
ory. Therefore, we implement a two-stage model ensemble:

y∗ = argmax
y

(f(x|A1)︸ ︷︷ ︸
Part 1

+ f(x|Aj)︸ ︷︷ ︸
Part 2

). (11)

In Eq. 11, Part 1, trained solely on the first incremental task,
acts as a crucial bridge between the upstream and down-
stream datasets. It not only demonstrates strong generaliza-
tion but also has the ability to quickly recognize and up-
date information. In contrast, Part 2 employs progressively
merged adapters and a self-refined adapter retrieval mecha-
nism for deep processing and conscious memory.
Summary of MOS. We initialize and train an adapter for
each incremental task to encode the task-specific informa-
tion, and employ the adapter merging strategy to mitigate
parameter drift phenomenon. Subsequently, we extract
prototypes from the current dataset for the current adapter
to complete the classifier head. During inference, we utilize
the training-free self-refined adapter retrieval mechanism to
correct the mistaken retrieval of irrelevant adapters. Finally,
we implement a two-stage model ensemble to select the
maximum logit.
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(f) VTAB B0 Inc10

Figure 2: Performance curve of different methods under different settings. All methods are initialized with ViT-B/16-IN1K. We annotate the
relative improvement of MOS above the runner-up method with numerical numbers at the last incremental stage.

Experiments
In this section, we evaluate MOS on seven benchmark
datasets and compare it to other SOTA methods to demon-
strate its superiority. Moreover, we provide an ablation study
and a visualized analysis to validate the robustness of MOS.

Implementation Details
Dataset: Since PTMs possess extensive knowledge re-
garding upstream tasks, we follow (Zhou et al. 2024a)
to evaluate the performance on CIFAR100 (Krizhevsky,
Hinton et al. 2009), CUB200 (Wah et al. 2011), ImageNet-
R (Hendrycks et al. 2021a), ImageNet-A (Hendrycks
et al. 2021b), objectNet (Barbu et al. 2019), Omnibench-
mark (Zhang et al. 2022), and VTAB (Zhai et al. 2019).
These datasets represent typical CIL benchmarks and
include out-of-distribution datasets that exhibit a significant
domain gap with ImageNet (i.e., the pre-trained dataset).
Specifically, There are 50 classes in VTAB, 100 classes in
CIFAR100, 200 classes in CUB, ImageNet-R, ImageNet-A,
ObjectNet, and 300 classes in OmniBenchmark. More
details are reported in the supplementary.
Dataset split: Following the benchmark setting (Rebuffi
et al. 2017; Wang et al. 2022c), we utilize the notation ‘B-m
Inc-n’ to represent class splits, where m indicates the num-
ber of classes in the initial task, and n denotes the number of
classes in each subsequent incremental task. m = 0 means
the total classes are equally divided into each task. For a
consistent and fair comparison, we randomly shuffle class
orders using a random seed of 1993 before splitting the data.

We ensure consistency in the training and testing sets across
all methods, following (Zhou et al. 2024a).
Training details: We use PyTorch (Paszke et al. 2019)
and PILOT (Sun et al. 2023) to implement all models on
NVIDIA RTX 4090 with the same network backbone. Since
the wide range of PTMs are publicly accessible (Wight-
man 2019), we choose two representative models follow-
ing (Wang et al. 2022b; Zhou et al. 2024a), denoted as ViT-
B/16-IN1K and ViT-B/16-IN21K. They are both initially
pre-trained on ImageNet21K, while the former is further
finetuned on ImageNet1K. In MOS, we set the batch size to
48 and train for 20 epochs using the SGD optimizer with mo-
mentum. The learning rate is initially set to 0.01 and follows
a cosine annealing decay pattern. The projection dimension
r in the adapter is set to 16, and the EMA factor parameter
α is set to 0.1.
Comparison methods: We choose state-of-the-art PTM-
based CIL methods for comparison, such as Finetune
Adapter (Chen et al. 2022), L2P (Wang et al. 2022c), Du-
alPrompt (Wang et al. 2022b), CODA-Prompt (Smith et al.
2023), SimpleCIL (Zhou et al. 2024a), APER (Zhou et al.
2024a), SLCA (Zhang et al. 2023), EASE (Zhou et al.
2024c). In addition, we compare MOS with traditional CIL
methods modified by PTM, including LwF (Li and Hoiem
2017), FOSTER (Wang et al. 2022a), MEMO (Zhou et al.
2023), iCaRL (Rebuffi et al. 2017), DER (Yan, Xie, and He
2021). We report the baseline method, which sequentially
finetunes the PTM, denoted as Finetune. All methods are
implemented with the same PTM for a fair comparison.
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Figure 3: Left: Experimental results with large base classes. All
methods are based on the same PTM (ViT-B/16-IN1K). Right:
Ablation study of different components in MOS. We find each
component within MOS enhances the performance.

Evaluation protocol: Following the benchmark established
by (Rebuffi et al. 2017), we denote the Top-1 accuracy after
the b-th stage as Ab. Moreover, we use AB (the performance
after the last stage) and Ā = 1

B

∑B
b=1 Ab (average perfor-

mance along incremental stages) as measurements.

Benchmark Comparison
In this section, we compare MOS with other SOTA methods
across seven datasets and various backbone weights. As de-
tailed in Table 1, MOS shows the best performance across
all seven benchmarks, significantly surpassing the SOTA
methods, such as SLCA, EASE, and APER. Furthermore,
we present an analysis of the incremental performance trend
of different methods in Figure 2 with ViT-B/16-IN1K. No-
tably, MOS outperforms the runner-up method by 2%∼5%
on CUB, ObjectNet, and OmniBenchmark, as highlighted in
the annotations at the end of each image.

Beyond the B0 setting presented in Table 1 and Figure 2,
we extend our experiments to a larger base setting. In
Figure 3a, we compare MOS with several SOTA methods
and traditional methods using the same PTM. Although
traditional methods require storing exemplars to recover
previous knowledge, MOS achieves SOTA performance in
this setting as well.

Ablation Study
In this section, we conduct an ablation study by incremen-
tally adding each component to evaluate their effectiveness
within MOS. Specifically, we present this ablation study
on ImageNet-R B0 Inc20 setting. As depicted in Figure 3b,
‘Baseline’ refers to the PTM integrated with A1 (i.e.,
ϕ(x|A1)). Since we aim to mitigate parameter drift and
build task-specific adapters, we report ‘w/ Adapter Merge’
by only using Eq. 6. Due to the mistaken retrieval issue, we
propose using the model’s inherent capabilities to correct
errors. We report the performance of ‘w/ Self-Refined
Adapter Retrieval Mechanism’ by using this technique
along with the adapter merging strategy. As shown in the
figure, both the adapter merging strategy and self-refined
adapter retrieval mechanism significantly improve the per-
formance, which indicates MOS has the ability to correct
itself and alleviate the catastrophic forgetting. Finally, we
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Figure 4: Visualizations of self-refined adapter retrieval mecha-
nism on ImageNet-R. The original images are depicted in the first
row, followed by the top-5 prediction probability before the self-
refined process, and the probabilities after refinement in the last
row. The ground-truth class is highlighted with red boxes.

adjust the logits using Eq. 11 to trade off stability and plas-
ticity, denoted as ‘w/ Ensemble’. Ablations verify that every
component in MOS contributes to improving performance.

Visualizations
In this section, we discuss how the self-refined adapter re-
trieval mechanism works. To illustrate this, we present the
visualization of prediction results before and after the self-
refined process and analyze their differences. We choose im-
ages from ImageNet-R and utilize the model trained under
the B0 Inc20 setting. The results are shown in Figure 4.
As shown in these figures, MOS is capable of rectifying
incorrect predictions. This is evident even in the example
below, where the initial top-5 class predictions do not in-
clude the ground truth, yet MOS accurately corrects this er-
ror. It demonstrates that the model, using its inherent capa-
bilities, can select the most suitable adapter for the current
sample. Hence, MOS can use this adapter to extract more
suitable features, which aids in enhancing prediction accu-
racy. These visualizations reveal that the self-refined adapter
retrieval mechanism can help to correct the outputs, thereby
enhancing the attention of the ground-truth class.

Conclusion
Incremental learning is an increasingly prominent paradigm
in real-world systems. This paper proposes a novel model
surgery (MOS) for PTM-based CIL to rescue the model
from forgetting previous knowledge. Specifically, we in-
troduce an adapter merging method to mitigate parameter
drift and design a training-free self-refined adapter retrieval
mechanism for better adapter retrieval during inference. Our
approach balances the stability-plasticity dilemma by lever-
aging the model’s inherent capabilities, enhancing gener-
alization and adaptability. Extensive experiments on seven
benchmark datasets validate the effectiveness of MOS. In
future work, we aim to explore further application scenar-
ios, such as few-shot class-incremental learning.
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